Классификация конденсированных сред по типам связей. Физика конденсированных сред Свойства кристаллов в зависимости от вида химических связей

Для того чтобы ожижить газ, необходимо охладить его ниже критической температуры Т кр. Во втором столбце таблицы 7.8.1 приведены значения критической температуры для некоторых газов. Как видно из таблицы, перевод таких газов, как кислород, азот, водород игелий, в жидкое состояние требует сильного понижения их температуры. Один из промышленных методов ожижения газов (метод Линде) использует для охлаждения газа эффект Джоуля - Томсона.

Таблица 7.8.1

На рис. 7.8.1 дана принципиальная схема метода Линде. Сжатый компрессором К газ проходит через холодильник X, в котором охлаждается до температуры, лежащей ниже точки инверсии. Это нужно для того, чтобы при последующем расширении газ в результате эффекта Джоуля - Томсона не нагревался, а охлаждался. Затем газ течет по внутренней трубке теплообменника Т.О. и, пройдя через дроссель Др (выполняющий те же функции, что и ватный тампон в опыте Джоуля- Томсона), сильно расширяется и охлаждается.

Теплообменник состоит из двух длинных трубок разных диаметров, вставленных одна в другую (для сокращения размеров теплообменника обе трубки свиваются в спираль). Стенки внутренней трубки делаются хорошо проводящими тепло. Наружная трубка покрывается тепловой изоляцией. Если по трубкам пустить встречные потоки газов, имеющих на входе разную температуру, то в результате теплообмена через стенки внутренней трубки температура газов будет выравниваться: газ, имевший на входе в теплообменник более высокую температуру, по мере прохождения по теплообменнику охлаждается, встречный поток нагревается. Сразу после запуска установки понижение температуры газа при расширении не достаточно для того, чтобы вызвать ожижение газа. Слегка охладившийся газ направляется по внешней трубке теплообменника, чем достигается некоторое охлаждение газа, текущего по внутренней трубке по направлению к дросселю. Поэтому каждая последующая порция газа, поступающая к дросселю, имеет более низкую температуру, чем предыдущая. Вместе с тем, чем ниже начальная температура газа, тем больше понижается его температура за счет эффекта Джоуля - Томсона. Следовательно, каждая последующая порция газа имеет до расширения более низкую температуру, чем предыдущая, и, кроме того, охлаждается при расширении сильнее. Таким образом, достигается все большее понижение температуры газа в сборнике Сб и, в конце концов, температура понижается настолько, что часть газа после расширения конденсируется в жидкость.

Второй промышленный метод ожижения газов (метод Клода) основан на охлаждении газа при совершении им работы. Сжатый газ направляется в поршневую машину (детандер), где он, расширяясь, совершает работу над поршнем за счет запаса внутренней энергии. В результате температура газа понижается. Этот метод был усовершенствован советским физиком П. Л. Капицей, который вместо поршневого детандера применил для охлаждения газа турбодетандер, т.е. турбину, приводимую во вращение предварительно сжатым газом.

Жидкие газы с низкой температурой кипения хранятся в сосудах специальной конструкции, называемых сосудами Дьюара. Они имеют двойные стенки, зазор между которыми тщательно эвакуируется. В условиях вакуума теплопроводность газа убывает с уменьшением давления. Поэтому эвакуиро

Раздел VIII. Конденсированные среды.

Конденсированное состояние - понятие, объединяющее твёрдые тела и жидкости в противопоставлении их газу. Атомные частицы (атомы, молекулы, ионы) в конденсированном теле связаны между собой. Ср. энергии теплового движения частиц не хватает на самопроизвольный разрыв связи, поэтому конденсированное тело сохраняет свой объём. Мерой связи атомных частиц служит теплота испарения (в жидкости) и теплота возгонки (в твёрдом теле).

В отличие от газообразного состояния, у вещества в конденсированном состоянии существует упорядоченность в расположении частиц (ионов, атомов, молекул). Кристаллические твёрдые тела обладают высокой степенью упорядоченности - дальним порядком в расположении частиц. Частицы жидкостей и аморфных твёрдых тел располагаются более хаотично, для них характерен ближний порядок. Свойства веществ в конденсированном состоянии определяются их структурой и взаимодействием частиц.

      1. Аморфные соединения

Аморфные соединения помимо высокоэластического могут находиться в двух других физ. состояниях: стеклообразном состоянии и вязко-текучем состоянии. высокомолекулярные соединения, которые переходят из высоко-эластичных состояния в стеклообразное при температурах ниже комнатной, относят к эластомерам, при более высокой температуре к пластикам. Кристаллические высокомолекулярные соединения обычно являются пластиками.

      1. Кристаллы и их виды

Кристаллы - отгреч. κρύσταλλος, первоначально -лёд , в дальнейшем -горный хрусталь , кристалл) -твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку.

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани и т. д.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

Основной отличительный признак кристаллов - присущее им свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных (жидкостях, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят.

      1. Свойства кристаллов в зависимости от вида химических связей

Типы химических связей в кристаллах . В зависимости от природы частиц и от характера сил взаимодействия различают четыре вида химической связи в кристаллах: ковалентную, ионную, металлическую и молекулярную.

Типы химической связи - это удобное упрощение. Более точно поведение электрона в кристалле описывается законами квантовой механики. Говоря о типе связи в кристалле, необходимо иметь в виду следующее:

    связь между двумя атомами никогда полностью не соответствует одному из описанных типов. В ионной связи всегда присутствует элемент ковалентной связи и т. п.

    в сложных веществах связь между разными атомами может быть разного типа. Так например, в кристалле белка связь в молекуле белка ковалентная, а между молекулами (или разными частями одной молекулы) водородная.

Физика конденсированных сред – одна из богатейших областей в современной физике с точки зрения математических моделей и формул.

Рисунок 1. Конденсированные среды. Автор24 - интернет-биржа студенческих работ

Замечание 1

Конденсированные среды с самыми разнообразными характеристиками встречаются абсолютно везде: кристаллы, обычные жидкости и аморфные тела, материалы с внутренней сложной структурой (к которым возможно отнести и мягкие конденсированные элементы), квантовые жидкости, спиновые постоянные цепочки, магнитные моменты, сложные пространства и так далее.

Часто свойства указанных веществ бывают настолько сложны и многогранны, что ученым приходится на начальном этапе рассматривать упрощенные математические варианты. В результате исследование точно решаемых уравнений конденсированных сред стал активным направлением в науке.

Движение каждой элементарной частицы в конденсированной среде находится в тесной взаимосвязи с движением соседей; следовательно, описывающие этот процесс формулы сильно "переплетены" между собой.

Среди классических разделов физики конденсированного состояния можно выделить следующие:

  • механика твёрдого тела;
  • теорию пластичности и трещин;
  • гидродинамику;
  • физику плазмы;
  • электродинамика сплошных сред.

Общим отправным пунктом в вышеперечисленных разделах считается понятие сплошной среды. Переход от конкретного набора отдельных частиц (ионов или атомов) к стабильному состоянию заключается в комплексном усреднении свойств концепции.

Основные области исследования

Рисунок 2. Физические формы конденсированных сред. Автор24 - интернет-биржа студенческих работ

В основном различные физические формы делятся на три категории: газообразные, жидкие и твердые. В этих трех состояниях вещества, предмет сгущенных исследований определяет прогресс на каждом этапе дисциплины наряду со всеми сферами человеческой жизни. Из традиционных идеальных металлов, керамики и композиционных элементах происходит активное участие во всех структурах, которые предполагают излучение света и электричества.

Тепло и другие характеристики физических тел основаны на исследованиях физики конденсированных сред, которые непосредственно обеспечивает базу для многих отраслей высокой науки и нанотехнологии как таковой. На сегодняшний день реализация принципов данного научного направления находится на подъеме с разработками микроэлектроники, лазерной техники и оптических коммуникационных технологий.

Главные области физики конденсированных сред:

  • теория неупорядоченных систем;
  • нанотехнологии;
  • механика сплошных сред;
  • электродинамика сплошных сред;
  • строение твердого тела;
  • движение жидкостей;
  • конденсированное мягкое вещество;
  • квантовый эффект Холла;
  • сверхпроводимость тепла.

В физике конденсированных сред все элементы делятся на атомы с целью детализированного изучения различных структур. Эта область физики начала набирать популярность только в последние десятилетия. Необходимо отметить значимость явления, которое происходит от изучения кристаллического твердотельного вещества во время его трансформации в жидкое состояние. В этих двух долгосрочных экспериментах исследователям удалось построить некоторую уверенность, и постепенно ввести некоторые действующий способы для содействия дальнейшим научным исследованиям.

Квантовая теория конденсированных сред

Квантовая гипотеза позволила изобретателям не только объяснить атомные нюансы и спектры, но и разгадать многие сложные загадки в поведении твердых физических тел, прежде всего идеальных кристаллов. Казалось бы, содержащий миллионы атомов кристалл изучать в миллионы раз труднее, чем отдельную элементарную частицу. Однако задача не так уж и сложна, если взглянуть на нее с абсолютно другой точки зрения.

Определение 1

Структура любого кристалла весьма упорядочена - это обычная кристаллическая решётка.

Внутри его по каждой прямой линии через равные промежутки расположены одни и те же атомы (или молекулы и ионы). Кристалл оснащен уникальным свойством периодичности по любому рассматриваемому направлению.

Потому-то при исследовании кристаллов именно упорядоченность помогает в первую очередь, а не свойства отдельных элементов. Как и в гипотезе молекулярных спектров, здесь используют методы теоретических групп и их общих представлений. Если молекулу в кристалле сдвинуть, то мгновенно возникнет сила, которая в итоге оттолкнет его от соседних частиц и вернет в исходное положение.

Благодаря этому кристалл при любых условиях устойчив: его ионы и атомы могут испытывать только незначительные колебания относительно положения стабильности и равновесия. Другое дело - электроны самих атомов. Определенная часть из них, которая расположена на низших энергетических ступенях, остается всегда в своем атоме. Но элементы с верхних уровней довольно свободно движутся от одного атома к другому, принадлежат при этом всему кристаллу.

Замечание 2

Движение таких электронов характеризуется уже не столько особенностями отдельных частиц, сколько характеристиками кристаллической решётки.

Следовательно, кристалл можно рассматривать как совокупность двух физических подсистем. Первая из них - сама кристаллическая решетка в виде периодической структуры из молекул, которые лишены валентных элементов, а потому в любом положении положительно заряженная. Вторая - общность электронов в электрическом периодическом поле положительно заряженной решётки.

Любое внешнее влияние на кристалл (электрическое, механическое, магнитное, тепловое) приводит в результате к тому, что в одной из концепций хаотично распространяются волны - как от брошенного камня в воду. Свойство периодичности избавляет исследователей от необходимости исследовать в кристалле подобные колебания отдельных ионов. Достаточно изучать волну в целом: согласно квантовой гипотезе, любому такому процессу соответствует частица - волновой квант; в теории твёрдого физического тела она носит название квазичастицей. Существует много видов квазичастиц. Один из самых распространенных - кванты или фотоны упругих колебаний кристаллической решётки, которые несут ответственность за распространение тепла и звука в кристалле.

Замечание 3

Таким образом, можно констатировать, что квантовая теория - это уникальный научный инструмент, позволяющий быстро проводить количественное и качественное исследование физического вещества на любом уровне - от атомов до сплошных сред.

Перспективы развития физики конденсированных сред

Физика конденсированных сред на данный момент находится в самом ярком периоде собственного расцвета. И, поскольку фундаментальные исследования в указанной области науки и практического использования технологии зачастую тесно взаимосвязаны между собой, результаты экспериментов представляет собой серию новых универсальных технологий, материалов и устройств, что в современном мире высоких технологий играет незаменимую ключевую роль.

В последние годы опыты в сфере физики конденсированных сред, способы и технологии изучения все более проникают в соседние дисциплины, связанные с развитием химических, биофизических и геофизических наук.

На сегодняшний день физика конденсированных тел активно развивается и внедряется во все области человеческой жизни. Однако, поскольку это направление является источником квантовой теории и движений кристаллических твердых тел, то сегодня по-прежнему является основным объектом исследования структур сплошных пространств. В конце концов, ученые сталкиваются с той же природы, в которой многие законы и явление универсальны. Именно через углубленное изучение возможно понять и осознать такие закономерности.

Типичная конденсированная среда это когда есть очень много частиц, и при этом каждая частица "живет" не своей отдельной жизнью и даже не в паре с соседом, а в "мире и согласии" с целым набором ближайших соседей.

Школьные примеры конденсированных сред: твердое тело (например, кристалл ) и жидкости . Более экзотические среды: электронная и другие квантовые жидкости , сверхтекучий гелий , жидкие кристаллы , разнообразные дисперсные системы (гели , пасты, эмульсии , суспензии ), нейтронная материя , кварк-глюонная плазма . Ну и наконец, толпа людей в состоянии паники , плотный поток автомашин на дорогах , и та сложная компьютерная сеть, которую мы называем интернетом это все тоже примеры конденсированных сред.

Почему физика конденсированных сред такая интересная и активная область исследований? Дело в том, что из-за того, что движение каждой отдельной частицы в конденсированной среде сильно скоррелировано с движением многих соседей; уравнения, описывающие движение частиц, сильно "переплетены" между собой. У вас не получится, например, решить сначала уравнение движения первой частицы, потом второй и т.д. Решать надо сразу все уравнения движения, для миллиардов, квинтиллионов и т.д. отдельных частиц. Такие системы уравнений не то, чтобы решить, а даже представить себе непросто.

Такая ситуация нагоняет уныние, не правда ли? Но теорфизики народ изобратательный, и потихоньку они научились описывать такие невообразимо сложные на первый взгляд системы. (На самом деле, по моему мнению, осознание этого тупика и попытки выйти из него и являются моментом рождения настоящей теоретической физики; но об этом я напишу как-нибудь позже.)

Самый известный пример того, как решить сразу триллионы уравнений, это история с фононами . Представьте себе, что есть у нас кристалл. Каждый атом в нем чувствует несколько ближайших соседей, причем чувствует очень и очень сильно. Один атом сам по себе колебаться не может, он обязательно потянет за собой своих соседей. В результате, "поколыхав" отдельную частицу, мы тут же вовлекаем в движение и ее непосредственных соседей, так что через некоторое время все вещество, все частицы придут в движение.

А давайте взглянем совсем по-другому на то, из чего состоит кристалл, как он живет. Колебания отдельных атомов это какой-то не очень удобный способ говорить о жизни кристаллов. А вот если говорить об определенных согласованных колебаниях всех частиц сразу фононах когда движение всей кристаллической решетки напонимает бегущую синусоидальную волну, то все становится поразительно просто. Отдельные фононы, оказывается, живут независимой жизнью: они могут "бегать" по кристаллу долгое время, проходить друг сквозь друга. И значит, уравнения, описывающие каждый отдельный фонон, решаются независимо и потому влет.

Конечно, это все справедливо для идеального кристалла, когда решетка строго периодическая, когда нет дефектов, когда границы кристалла не влияют на его внутреннюю жизнь, и наконец, когда колебания можно считать линейными (что влечет за собой невзаимодействие фононов). Реальные кристаллы не такие, и потому описанные выше свойства для него выполняются не строго, а лишь приближенно. Но и это бывает вполне достаточно, чтобы объяснить многие явления, происходящие в кристалле.

Безусловно, можно возразить, что, мол, в реальности-то у нас есть колебания атомов, а никакие не фононы. Но, скажем, при описании термодинамических свойств кристалла проще всего его воспринимать именно как газ фононов. И мне, честно говоря, неизвестно, можно ли построить всю статфизику кристалла, ни разу не обращаясь к концепции фононов.

На самом деле, переход от отдельных атомов к фононам, есть ничто иное, как преобразование Фурье от координат к (квази)импульсам. Просто оказывается, что в импульсном представлении кристалл выглядит намного проще, чем в координатном.

Жизнь кристалла, конечно, не сводится к одним только колебаниям кристаллической решетки. Поэтому описанные здесь фононы это лишь самая простая из целого семейства квазичастиц , населяющих твердое тело.


Top