Проект по электробезопасности "Его величество Электричество" в подготовительной к школе группе проект по обж (подготовительная группа) на тему. Электробезопасность

Опасность поражения электрическим током

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Анализ смертельных несчастных случаев на производстве показывает, что на долю поражений электрическим током приводится до 40 %, а в энергетике – до 60%. Большая часть смертельных электропоражений (до 80%) наблюдается в электроустановках с напряжением до 1000 В.

Проходя через живые ткани, электрический ток оказывает термическое, электролитическое и биологическое воздействия. Это приводит к различным нарушениям в организме, вызывая как местное поражение тканей и органов, так и общее поражение организма.

Виды поражения электрическим током. Следует выделить два вида поражений электрическим током: электрический удар и местные электрические травмы, которые резко отличаются друг от друга. Местными электрическими травмами являются поражения тканей и органов электрическим током: ожоги, электрические знаки, электрометаллизация кожи, механические повреждения и электроофтальмия.

Электрический ожог возможен при прохождении через тело человека значительный токов (более 1 А). В тканях, через которые проходит ток, как и в любом сопротивлении, выделяется некоторое количество теплоты, пропорциональное приложенному напряжению и току. Этой теплоты при больших токах достаточно для нагрева поражаемых тканей до температуры 60-70 градусов по Цельсию, при которой свёртывается белок и возникает ожог. Такие ожоги проникают глубоко в ткани тела и поэтому очень болезненны и требуют длительного лечения. А иногда приводят к частичной или полной инвалидности.

В электроустановках напряжением 35 кВ и выше ожоги могут возникать и без непосредственного контакта с токоведущими частями, а лишь при случайном приближении на опасное расстояние. Когда это расстояние меньше или равно разрядному, возникает сначала искровой разряд, который переходит в электрическую дугу. Температура дуги достигает 4000 градусов по Цельсию, кроме того, ткани тела человека нагреваются проходящим через них током. Это приводит к ожогу. Под действием тока происходит резкое сокращение мышц, которое приводит к разрыву дуги. Поскольку ток проходил через тело человека кратковременно, нарушений дыхания и кровообращения может не наступать, однако полученный ожоги весьма серьёзны, а иногда и смертельны.

В электроустановках до 1000 В возможны также ожоги электрической дугой. В этом случае дуга возникает между токоведущими частями, а человек попадает в зону действия дуги.

Электрические знаки (метки тока) возникают при хорошем контакте с токоведущими частями. Они представляют собой припухлость с затвердевшей в виде мозоли кожей серого или желтовато- белого цвета круглой или овальной формы. Края электрического знака резко очерчены белой или серой каймой.

Последствия электрического знака при больших его размерах могут быть очень серьёзными. Глубокое поражение большого участка живой ткани может привести к нарушению функций поражённого органа, хотя электрические знаки безболезненны. Природа электрических знаков не выяснена. Есть предположение, что они вызываются химическим и механическим действием тока.

Электрометаллизация кожи – проникновение под поверхность кожи частиц металла вследствие разбрызгивания и испарения его под действием тока, например при горении дуги.

Металл может проникать в кожу также вследствие электролиза в местах соприкосновения человека с токоведущими частями. Повреждённый участок кожи приобретает жёсткую шероховатую поверхность, цвет которой определяется цветом соединений металла, внедрившегося в кожу. Со временем металл рассасывается или повреждённая кожа сходит, поражённый участок восстанавливает нормальный вид и болезненные явления исчезают.

Электроофтальмия. к электрическим травмам следует отнести также поражение глаз вследствие воздействия ультрафиолетового излечения электрической дуги или ожогов.

Механические повреждения (ушибы, переломы и пр.) при падении с высоты вследствие резких непроизвольных движений или потери сознания, вызванных действием тока, также относятся к электрическим травмам.

Электрический удар наблюдается при воздействии малых токов – обычно до нескольких сотен миллиампер и соответственно при небольших напряжениях – как правило, до 1000 В. При такой малой мощности выделение теплоты ничтожно и не вызывает ожога. Тог действует на нервную систему и на мышцы, причём может возникнуть паралич поражённых органов. Паралич дыхательных мышц, а также мышц сердца может привести к смертельному исходу.

Небольшие токи вызывают лишь неприятные ощущения. Если ток имеет значение, достаточное, чтобы парализовать мышцы рук, человек неспособен самостоятельно освободиться от тока, таким образом, действие тока будет длительным.

Ток в несколько десятков миллиампер при длительном воздействии (долее 20 с) приводит к остановке дыхания. Но наиболее опасны остановка и фибрилляция сердца.

Остановка сердца вызывается током в несколько сотен миллиампер при сравнительно малой длительности воздействия (доли секунды), причем мышцы сердца расслабляются и остаются в таком состоянии. Фибрилляция сердца заключается в беспорядочном сокращении и расслаблении мышечных волоокое сердца. Сердце затрачивает значительную энергию, но не производит полезной работы, кровообращение прекращается, сердце истощается и останавливается.

Следует отметить, что большие токи (порядка нескольких ампер) не вызывают ни остановки, ни фибрилляции сердца. Сердечные мышцы под действием тока обычно резко сокращаются и остаются в таком состоянии до отключения тока, после чего сердце продолжает работать. Более того, если через сердце пострадавшего, у которого наблюдается паралич или фибрилляция сердца, пропустить ток приблизительно 4-6 А, мышцы сердца сокращаются и после отключения тока сердце продолжает работать. На этом принципе основано действие дефибриллятора – прибора для восстановления работы сердца, остановившегося или находящегося в состоянии фибрилляции.

Пороговые значения тока:

  1. порог ощущения тока – наименьший ощутимый ток (0,5 — 1,5 мА);
  2. порог неотпускающего тока – наименьший ток, при котором человек уже не может самостоятельно освободиться от захваченных электродов действием тех мышц, через которые проходит ток (6-19\0 мА). Меньшие токи называются отпускающими;
  3. Смертельный ток (100 мА и более).

Воздействие постоянного и переменного тока на человека

Значение тока, проходящего через человека, мА Характер воздействия
Переменный ток, 50 60 Гц Постоянный ток
0,5 – 1,5 Начало ощущения, легкое дрожание пальцев руки Не ощущается.
2,0 – 3,0 Сильное дрожание пальцев рук. Ощущение доходит до запястья Не ощущается.
5,0-7,0 Легкие судорогои в руках. Болевые ощущения в руках. Зуд. Ощущение нагрева.
8,0-10 Руки трудно, но ещё можно оторвать от электродов. Сильные боли в пальцах, кистях рук и предвлесчях. Усиление ощущения нагрева
20-25 Паралич рук, оторвать их от электродов невозможно. Очень сильные боли. Дыхание затруднено. Ещё большее усиление нагрева. Незначительное сокращение мышц рук.
50-80 Остановка дыхания. Начало фибрилляции сердца. Сильное ощущение нагрева. Сокращение мышц рук. Судороги, затруднениедыхиния.
90-100 Остановка дыхания. при длительности 3 с и более остановка сердца. Остановка дыхания.

У женщин пороговые значения тока приблизительно в 1,5 раз ниже. Это объясняется более слабым физическим развитием женщин.

У одного и того же человека пороговые значения тока изменяются в зависимости от состояния организма, утомления и т. п.

Путь тока в теле человека. Наиболее опасно прохождение тока через дыхательные мышцы и сердце. Так отмечено, что по пути «рука-рука» через сердце проходит 3, 3% общего тока, левая рука – ноги» – 3,7%, «правая рука — ноги» — 6,7 %, «нога — нога» — 0,4 %, «голова — ноги» — 6,8 %, «голова – руки» — 7 %.

По данным статистики потеря трудоспособности на три дня и более наблюдалась при пути тока «рука — рука» в 83 % случаев, «левая рука – ноги» — в 80 % случаев, «правая рука — ноги» — 87 %, «нога — нога» — в 15 % случаев.

Род и частота тока.

Установлено, что переменный ток частотой 50-60 Гц более опасен, чем постоянный. Однако даже небольшой постоянный ток (ниже порога ощущения) при быстром разрыве цепи дает очень резкие удары, иногда вызывающие судороги мышц рук.

На рисунке изображена зависимость порога неотпускающего тока от частоты:

а – для 1,5 % испытуемых; кривая б – для 100 % испытуемых.

Электрическая схема замещения сопротивления тела человека:

а – схема измерения; б – полная схема замещения; в – упрощенная схема замещения; 1 – электроды; 2 – наружный слой кожи; 3 – внутренние ткани тела

Основным сопротивлением в цепи тока через тело человека является верхний роговой слой кожи, толщина которого составляет 0,05-0,2 мм. При снятом роговом слое кожи сопротивление внутренних тканей не превышает 800-1000 Ом.

При сухой неповрежденной коже сопротивление может достигать 10000 и даже 100000 Ом.

Зависимость сопротивления тела человека от приложенного напряжения

Обычно принято счтиать узаконенной величиной сопротивления тела человека 1000 Ом.

Значения кратковременно допустимых токов и напряжений:

Характеристика электроустановок Нормируемая величина продолжительность воздействия тока, с
01 0,2 0,5 0,7 1,0 3,0 От 3 до 10
Частота 50 Гц4 напряжение до 1000 В; изолированная и заземлённая нейтраль; напряжение от 100 В до 35 кВ включительно при н\изолированной нейтрали U пр, В 500 250 100 75 50 36 36*
I h , мА 500 250 100 75 50 6 6
Частота 50 Гц, напряжение выше 35 кВ при заземлённай нейтрали ** U пр, В 500 400 200 130 100 65
частота 400 Гц U пр, В 500 200 140 100 36 36**
I h , мА 500 200 140 100 8 8
Постоянный ток U пр, В 500 400 250 200 150 100 100****
I h , мА 500 400 200 150 150 50 50****

* В особо опасных помещениях по условиям поражения током (и вне помещений) U пр = 12 В

** Для рабочих мест на защищаемой территории открытых и закрытых распределительных устройств.

*** В особо опасных помещениях) и вне помещений) U пр = 24 В

**** То же U пр =50 В,I h =25 мА.

Длительно допустимое напряжение прикосновения можно определить как произведение длительно допустимого тока и сопротивления тела человека, соответствующего этому току:

U пр. д =I h д,д R h .

Согласно данным сопротивление человека току 10 мА равно R h =2000 Ом. Отсюда длительно допустимое напряжение прикосновения равно U пр. д. д=20В.

Классификация электроустановок.

Электроустановками называются установки, предназначенные для производства, преобразования, распределения энергии, а также потребления электроэнергии.

Различают электроустановки с большими токами замыкания на землю, в которых ток однополюсного глухого замыкания на землю превышает 500 А, и электроустановки с малыми токами замыкания на землю, в которых ток однополюсного глухого замыкания на землю равен или меньше 500 А.

Сухими помещениями называются такие помещения, в которых относительная влажность воздуха не превышает 60%.

Влажными помещениями называются помещения, в которых относительная влажность воздуха больше 60 %, но не превышает 75 %. В таких помещениях возможно кратковременное выделение паров и конденсирующейся влаги в небольших количествах.

Сырыми помещениями называются такие помещения, в которых относительная влажность воздуха близка к 100 % (стены, пол, потолок и предметы, находящиеся в помещении, покрыты влагой), называются особо сырыми.

Помещения, в которых температура воздуха длительно превышает 30 градусов по Цельсию, называются жаркими помещениями.

Помещения, в которых выделяется технологическая пыль в таких количествах, что она может проникать под кожухи и оседать на проводах, называются пыльными помещениями. Пыльные помещения подразделяются на помещения с проводящей пылью и непроводящей.

Помещения, в воздухе которых содержатся газы или пары или образуются отложения, разрушающие изоляцию или токоведущие части оборудования, называются помещениями с химически активной средой.

Признаки повышенной опасности:

  • наличие токопроводящих полов;
  • наличие сырости (относительая влажность воздуха выше 75 %) или проводящей пыли;
  • повышенная температура воздуха – более +30 градусов по Цельсию;
  • возможность одновременного прикосновения человека к имеющим соединение с землёй корпусам технологического оборудования, с одной стороны, и к металлическим корпусам электрооборудования или токоведущим частям, с другой.

Признаки особой опасности:

  • наличие особой сырости (относительная влажность воздуха приближается к 100 %);
  • наличие химически активной среды.

По этим признакам помещения разделяются на:

  • помещения без повышенной опасности, в которых отсутствуют признаки как повышенной, так и особой опасности;
  • помещения с повышенной опасностью, характеризующиеся наличием только одного признака повышенной опасности;
  • особо опасные помещения, характеризующиеся наличием хотя бы одного признака особой опасности или одновременно двух или более признаков повышенной опасности.

Кроме того, по доступности электрооборудования следует различать:

  • замкнутые электротехнические помещения, в которых установлено электрооборудование не требующее постонянного надзора и поэтому находящееся под замком. В этих помещениях лишь для кратковременного осмотра и ремонта бывают лица, имеющие электротехническую квалификацию. Внимание персонала, находящегося в таких помещениях в течение короткого времени, не должно быть ослаблено;
  • электротехнические помещения – помещения или отгороженные части помещения, доступные только для обслуживающего электротехнического персонала, в которых установлено электрооборудование, требующее постоянного присутствия обслуживающего персонала. Так как люди находятся в этих помещениях длительно, возможна потеря внимания;
  • производственные помещения, в которых длительный контакт с электрооборудованием (электроприводами станков, осветительными установками и т. п.) имеют лица неэлектротехнических специальностей, не имеющие достаточного понятия о безопасности при работе с электрооборудоавнием.

В электроустановках применяют следующие технические защитные меры:

  • малые напряжения;
  • электрическое разделение сетей;
  • контроль и профилактика повреждений изоляции;
  • компенсация емкостной составляющей тока замыкания на землю;
  • обеспечение недоступности токоведущих частей;
  • защитное заземление;
  • зануление;
  • двойная изоляция;
  • защитное отключение.
Поделиться:

I Введение. Электричество, совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц.

II Основная часть. Электробезопасность.

1. Медицина об электротравмах.

2. Причины поражения током

3. Электротравматизм и состояние полмещений

4. Меры предосторожности при работе с электроприборами.

5. Меры помощи при поражении током.

6. Юридическая ответственность при работе с электрическим током.

7. «Жизненные ситуации»

8. Опасность молнии.

9. Электрическое поле и защита от него.

III Заключение. Физика и экология быта.

I Введение

ЭЛЕКТРИЧЕСТВО (от греч. elektron - янтарь), совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве - один из основных разделов физики.

Часто под электричеством понимают электрическую энергию, напр., когда говорят об использовании электричества в народном хозяйстве; значение термина «электричество» менялось в процессе развития физики и техники.


ЭЛЕКТРИЧЕСТВО, совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц - носителей электрических зарядов.

Связь электричества и магнетизма

Взаимодействие неподвижных электрических зарядов осуществляется посредством электростатического поля. Движущиеся заряды (электрический ток) наряду с электрическим полем возбуждают и магнитное поле, то есть порождают электромагнитное поле, посредством которого осуществляются электромагнитные взаимодействия. Таким образом, электричество неразрывно связано с магнетизмом. Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла.

Происхождение терминов «электричество» и «магнетизм»

Простейшие электрические и магнитные явления известны с глубокой древности. Близ города Магнесия в Малой Азии были найдены удивительные камни (по месту нахождения их назвали магнитными, или магнитами), которые притягивали железо. Кроме того, древние греки обнаружили, что кусочек янтаря (греч. elektron, электрон), потертый о шерсть, мог поднять маленькие клочки папируса. Именно словам «магнит» и «электрон» обязаны своим происхождением термины «магнетизм», «электричество» и производные от них.

Электромагнитные силы в природе

Классическая теория электричества охватывает огромную совокупность электромагнитных процессов. Среди четырех типов взаимодействий - электромагнитных, гравитационных, сильных (ядерных) и слабых, существующих в природе, электромагнитные взаимодействия занимают первое место по широте и разнообразию проявлений. В повседневной жизни, за исключением притяжения к Земле и приливов в океане, человек встречается в основном только с проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена «века пара» «веком электричества» означала лишь смену эпохи, когда не умели управлять электромагнитными силами, на эпоху, когда научились распоряжаться этими силами по своему усмотрению.

Трудно даже перечислить все проявления электрических (точнее, электромагнитных) сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) тел. Все виды сил упругости и трения также имеют электромагнитную природу.

Велика роль электрических сил в ядре атома. В ядерном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн - света, радиоволн, теплового излучения и др.

Основные особенности электромагнитных сил

Электромагнитные силы не универсальны. Они действуют лишь между электрически заряженными частицами. Тем не менее они определяют структуру материи и физические процессы в широком пространственном интервале масштабов - от 10-13 до 107 см (на меньших расстояниях определяющими становятся ядерные взаимодействия, а на больших - нужно учитывать и гравитационные силы). Главная причина в том, что вещество построено из электрически заряженных частиц - отрицательных - электронов и положительных атомных ядер. Именно существование зарядов двух знаков - положительных и отрицательных - обеспечивает действие как сил притяжения между разноименными зарядами, так и сил отталкивания между одноименными, и эти силы очень велики по сравнению с гравитационными.

С увеличением расстояния между заряженными частицами электромагнитные силы медленно (обратно пропорционально квадрату расстояния) убывают, подобно гравитационным силам. Но заряженные частицы образуют нейтральные системы - атомы и молекулы, силы взаимодействия между которыми проявляются лишь на очень малых расстояниях. Существенен также сложный характер электромагнитных взаимодействий: они зависят не только от расстояний между заряженными частицами, но и от их скоростей и даже ускорений.

II Основная часть

Применение электричества в технике

Широкое практическое использование электрических явлений началось лишь во второй половине 19 в., после создания Дж. К. Максвеллом классической электродинамики.

Изобретение радио и Г. Маркони - одно из важнейших применений принципов новой теории. Впервые в истории человечества научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания теории теплоты (термодинамики), то сконструировать электродвигатель или осуществить радиосвязь оказалось возможным только после открытия и изучения законов электродинамики.

Широкое применение электричества связано с тем, что электрическую энергию легко передавать по проводам на большие расстояния и, главное, преобразовывать с помощью сравнительно несложных устройств в другие виды энергии: механическую, тепловую, энергию излучения и т. д. Законы электродинамики лежат в основе всей электротехники и радиотехники, включая телевидение, видеозапись и почти все средства связи. Теория электричества составляет фундамент таких актуальных направлений современной науки, как физика плазмы и проблема управляемых термоядерных реакций, лазерная оптика, магнитная гидродинамика, астрофизика, конструирование вычислительных машин, ускорителей элементарных частиц и др.

Бесчисленные практические применения электромагнитных явлений преобразовали жизнь людей на земном шаре. Человечество создало вокруг себя «электрическую среду» - с повсеместной электрической лампочкой и штепсельной розеткой почти на каждой стене.

Медицина об электротравмах

Ребята и взрослые люди часто неправильно обращаются с электроприборами, подвергая свою жизнь опасности. В нашем городе известны случаи электротравматизма, есть среди них и с трагическим исходом. Опасность работы с электроприборами заключается в том, что ток и напряжение не имеют внешних признаков, которые позволили бы человеку при помощи органов чувств(зрения, слуха, обоняния) обнаружить грозящую опасность и принять меры предосторожности. Как известно, тело человека является проводником. Если кто-то случайно прикоснется к токоведущим частям электроустановки, к оголенным проводам или клеммам, находящимся под напряжением, то по его телу пойдет электрический ток. В результате человек может получить электротравму. Все мы постоянно имеем дело с электроприборами. Чтобы избежать поражения током, необходимо знать действия тока на организм человека; факторы, от которых зависит поражающее действие тока; как предотвратить электротравмы и как оказать первую помощь при поражении электротоком.

Электротравмы – повреждения организмов электрическим током - встречаются в промышленности, сельском хозяйстве , на транспорте, в быту. Их причиной может быть и атмосферное электричество (молния).

Тяжесть поражения организма зависит от силы тока, напряжения, длительности действия тока и его вида (постоянный или переменный). Установлено, что наиболее опасен переменный ток. Опасность возрастает с увеличением напряжения. Чем длительнее воздействие тока, тем тяжелее электротравма.

Ток вызывает различные местные и общие нарушения в организме. Местные явления (в месте контакта) могут варьироваться от незначительных болевых ощущений до тяжелых ожогов с обугливанием и обгоранием отдельных частей тела. Общие явления выражаются в нарушении деятельности центральной неверной системы, органов дыхания и кровообращения. При электротравамах наблюдается обмороки, потеря сознания, расстройства речи, судороги, нарушения дыхания (вплоть до остановки), в тяжелых случях шок и даже может наступить мгноговенная смерть.

Для электроожогов характерны «знаки тока»-плотные струпы на месте соприкосновения кожи с проводом. У пораженных молний на коже остаются следы прохождения тока в виде красноватых полюс – «знаков молний». Воспламенение одежды при воздействии тока приводит к ожогам.

· Основные фактор поражения организма - это сила тока, протекающего по телу. Она определяется законом Ома, а значит, зависит от приложенного напряжения и сопротивления тела. При точечном контракте сопротивление кожи является определяющим фактором, который ограничивает ток. Сухая кожа имеет большое сопротивление, а влажная - малое. Так, при сухой коже сопротивление между крайними точками тела, например от ноги до руки или от одной руки до другой, может быть равно 10 5 Ом, а между потными руками составляем 1500 Ом.

Вычислим максимальные силы токов, возникающие при контакте с бытовой техникой электросетевого напряжения (220 В):

I1=2,2мА (сухая кожа);

I2=150мА (мокрая кожа).

Наиболее чувствительный к электрическому току – мозг, грудные мышцы и нервные центры, которые контролируют дыхание и работу сердца.

Прохождение тока по телу человека можно наглядно показать на такой модели. Внутрь скелета человека вставлена гирлянда из лампочек (для новогодней ёлки), проходящая через органы, которые больше всего поражаются током.

· Если ток от внешнего источника проходит через сердце, то могут возникнуть нескоординированные сокращения его желудочков. Этот эффект называется желудочковыми фибрилляциями. Самопроизвольно возникнув, они не прекращаются, даже если тока уже нет. В это состояние сердце может быть приведено при силе тока от 50 до 100 мкА. Сердечные мышцы, в течение 1-2 мин не получающие крови, слабеют, в результате чего они не могут быть снова приведены в состояние нормальных сокращений. Если до этого момента будут приняты экстренные меры то регулярное действие сердца может быть восстановлено.

Даже более слабые токи, чем те, что вызывают желудочковые фибрилляции, могут привести к остановке дыхания, парализуя действия нервных центров, контролирующих работу лёгких. Это состояние сохраняется даже после прерывания тока. Дыхательный паралич может возникнуть при силе тока от 25 до 100 мА. Даже при 10 мА грудные мышцы могут сократится так, что дыхание прекратится. Некоторые действия тока на организм приведены в следующей таблице:

Сила тока

Действия тока

Отсутствует

Потеря чувствительность

Боль, мышечных сокращения

Растущее воздействие на мышцы, некоторые повреждения

Дыхательный паралич

Желудочковые фибрилляции (необходима немедленная реанимация)

Остановка сердца (если шок был кратким, сердце можно реанимировать), тяжелые ожоги

Причины поражения током

Основные причины электротравматизма:

1. Неисправность приборов или средств защиты

2. Замыкание фазовых проводов на землю.

раздражительность, боли в

области сердца

III Заключение

Все больше и больше электрических приборов входит в наш быт. Но все ли они улучшают наше здоровье? Вовсе нет. Работа многих из них облегчает труд, создает комфорт, но отрицательно сказывается на самочувствии человека. Так что весьма часто за комфорт мы платим здоровьем. В таблице указано отрицательное воздействия некоторых бытовых приборов и возможные меры по уменьшению этого влияния на наше здоровье.

659 " style="width:494.2pt;border-collapse:collapse;border:none">

Бытовой прибор

Фактор опасности

Как его уменьшить

Электробритва

Электромагнитное поле большой интенсивности

Уменьшить время её работы, а лучше пользоваться механической бритвой

Микроволновая печь

Электромагнитное поле

Не подходить близко к включенной печи

Электронная трубка компьютера или телевизора

Электромагнитное поле, рентгеновское излучение

Ограничить время работы, учитывать, что излучение максимально по бокам и сзади этих приборов

Радиотелефон

Узкополосное электромагнитное излучение

Меньше разговаривать по нему

Электрическое одеяло

Электромагнитное поле

Использовать только для нагревания постели, но не спать под ним

Звукотехника

Низкочастотные звуки, шумы

Избегать громкого звучание аппаратуры

На меня действуют такие электрические поля:

Источник поля

Частота, Гц

Состояние (вкл. или выкл.

Напряженность поля, В/м

На расстоянии 0,5 м

Настольная лампа

Настольная лампа

Вкл., выкл.

Электрический чайник

Вкл., выкл

Будьте осторожны с электричеством!

Прохождение тока через тело человека силой около 100мА вызывает серьезные поражения организма. Безопасным для человека считается ток силой до1 мА. Удельное сопротивление верхнего слоя сухой кожи человека очень велико. Если кожа на повреждена и на ней нет влаги, то сопротивление тела человека весьма значительно (15кОм). Однако в сыром помещении сопротивление тела человека резко снижается и безопасным считается напряжение до 12 В. Помните, что электромонтаж и ремонт электрической цепи следует проводить только тогда, когда напряжение снято.

Использованная литература.

1. Блудов по физике. – М.: Просвещение, 1975.

2. Богатырев. – М.: 1983.

3. Гостюшин себя и близких. – М.: 1978.

4. Топорев безопасности жизнедеятельности . 10 – 11 класс . – М.: Просвещение,2000.

5. Большая энциклопедия Кирилла и Мефодия. 2001

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц; источник электромагнитного поля. Электрический заряд любых заряженных тел - целое кратное элементарного электрического заряда е . Электрические заряды составляющих адронов - кварков - дробные (кратны 1/3 е ). Полный электрический заряд замкнутой системы сохраняется при всех взаимодействиях

МАКСВЕЛЛ (Maxwell) Джеймс Клерк (13 июня 1831, Эдинбург, - 5 ноября 1879, Кембридж), английский физик, создатель классической электродинамики, один из основоположников статистической физики, основатель одного из крупнейших мировых научных центров конца 19 - нач. 20 вв. - Кавендишской лаборатории; создал теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

(/06), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях (в т. ч. для радиосвязи. В нач. 1895 создал совершенный по тому времени вариант радиоприемника и продемонстрировал его 2, используя в качестве источника электромагнитного излучения вибратор Герца. На базе своего радиоприемника сконструировал (1895) прибор для регистрации грозовых разрядов («грозоотметчик»). В 1897 начал работы по беспроволочному телеграфированию. В том же году передал на расстояние ок. 200 м свою первую радиограмму, состоящую из одного слова «Герц». В 1901 достиг дальности радиосвязи ок. 150 км. Золотая медаль на Всемирной выставке 1900 в Париже.

МАРКОНИ (Marconi) Гульельмо (), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с).

Актуальность проекта

Сегодня без электроэнергии немыслима жизнь современного человека. Электричество – наш верный помощник в труде и в быту, но оно становится опасным для жизни человека, если с ним неправильно и небрежно обращаться. К сожалению, из года в год повторяются несчастные случаи с детьми, связанные с электротравматизмом по причине их неосведомлённости об опасности электрического тока. И зачастую они приводят к печальному исходу от действия поражающих факторов.

Во избежание электрических травм необходимо строго соблюдать элементарные требования техники безопасности и следовать правилам эксплуатации электрооборудования.

Для предупреждения травматизма с детьми необходимо постоянно вести разъяснительную работу об опасности электрического тока и мерах безопасности. Необходимо объяснять детям, что категорически запрещается: приближаться к электроустановкам и оборванным проводам; влезать на опоры воздушных линий, крыши домов и строений, где поблизости проходят электрические провода; набрасывать проволоку и другие предметы на линии электропередачи. Непонимание детьми опасности электрического тока может привести к трагедии.

Сегодня в каждом доме имеется десяток, а то и более различных электрических устройств. Это осветительные приборы, телевизоры, холодильники, стиральные машины, чайники, обогреватели и т.п.

Проект поможет детям научиться выделять среди предметов домашнего обихода электроприборы; усвоить, что электричество может быть очень опасным; научит, как уберечь себя от поражения электрическим током; запомнить правила безопасного обращения с электроприборами и электрооборудованием (проводами, выключателем, розеткой); познакомит с правилами безопасного обращения с электричеством дома и на улице;

Участники проекта: Дети подготовительной к школе группы, воспитатели, родители.

Продолжительность проекта: краткосрочный.

Цель проекта: Расширить представления детей о бытовых электроприборах, их назначении и правилах пользования. Активизировать умение избегать опасных ситуаций и по возможности правильно действовать. Довести до понимания детей необходимость бережного отношения к себе и другим.
Задачи проекта:

· Обобщить знания детей об электричестве.

· Расширять представления о том, где «живёт» электричество, как оно помогает человеку и как может быть опасно для жизни.

· Закреплять правила безопасного поведения в обращении с электроприборами в быту.

· Развивать мыслительную активность, умение наблюдать, анализировать, делать выводы.

· Вызывать радость от открытий, полученных из опытов.

· Воспитывать умение работать в коллективе.

· Воспитывать интерес к познанию окружающего мира.

· Воспитывать сознательное отношение к вопросам личной безопасности в доме.

По окончании работы предполагается получить следующий результат: Владение правилами безопасного обращения при работе с электроприборами в быту.

Соблюдение правил безопасности на улице вблизи электрообъектов повышенной опасности.

Довести до понимания детей необходимость бережного отношения к себе и другим.

Форма проведения

Тема

Цель

электричества

Дать детям информацию, что такое электричество, для чего оно нужно человеку.

Рассматривание иллюстраций

«Предметы

помощники»

Закрепить знания детей о бытовых приборах, как они помогают человеку.

« Чем опасно

электричество»

Изучение правил техники безопасности и пожарной безопасности при использовании электрических приборов доме.

Рассматривание иллюстраций

безопасности»

Дидактические

«Найди не выключенный электроприбор»

«Собери картинку»

«Можно и нельзя»

Закрепить знания правил электробезопасности.

Экспериментальная деятельность

Опыты со статическим

электричеством

Выявить способности наэлектризованных предметов, развивать любознательность.

Экскурсия в

библиотеку

«Путешествие в прошлое лампочки»

Познакомить с прошлым электроприборов.

Чтение художественной литературы

Рассказ «Искрёнка»

Обсуждение с детьми ситуации, которая произошла с героем.

Закрепить знания правил электробезопасности.

Просмотр документального фильма

« Тайна жёлтого

треугольника»

Показать, как и где вырабатывается электроэнергия. Как электричество помогает людям и чем оно может быть опасно.

Изобразительная деятельность

Исследовательский проект на тему: «Электробезопасность» подготовил студент 2 курса "Электростальского колледжа" группы ОЗГ (Овощевод защищенного грунта) 17-01 Шайкин Илья Олегович.

Цель проекта заключается в том, чтобы донести до аудитории полноценную информацию по вопросам электробезопасности и предостеречь студентов от получения травм, связанных с некорректным поведением и эксплуатации неисправного электрооборудования.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Государственное бюджетное профессиональное образовательное учреждение Московской области « Электростальский колледж» Исследовательский проект На тему: Электробезопасность. Подготовил: студент группы ОЗ Г 17-01 Шайкин Илья Олегович

Аннотация Цель проекта заключается в том, чтобы донести до аудитории полноценную информацию по вопросам электробезопасности и предостеречь людей от некорректного поведения и эксплуатации неисправного электрооборудования.

Что такое элетробезопасность? Электробезопасность - система организационных мероприятий и технических средств, предотвращающих вредное и опасное воздействие на работающих от электрического тока, электрической дуги, электромагнитного поля и статического электричества.

В чем состоят особенности опасности электрического тока? Электрический ток имеет существенные особенности, отличающие его опасность от опасности от других вредных и опасных производственных факторов (например, излучающих тепловую, световую энергию и другую).

Первая особенность электрического тока в том, что он не может дистанционно ощущаться человеком ввиду того, что человек не обладает соответствующими органами чувств. Поэтому защитная реакция организма проявляется только после воздействия электрического тока.

Вторая особенность электрического тока состоит в том, что он, протекая через тело человека, оказывает свое действие не только в местах контактов и на пути протекания через организм, но и вызывает рефлекторное воздействие, нарушая нормальную деятельность отдельных органов и систем организма человека (нервной, сердечнососудистой, дыхания и др.).

Третьей особенностью является опасность получения электротравмы без непосредственного контакта с токоведущими частями – при перемещении по земле (полу) вблизи поврежденной электроустановки (в случае замыкания на землю), через электрическую дугу.

Классификация средств защиты. К электрозащитным средствам относятся: - электроизолирующие штанги всех видов (оперативные, измерительные, для установки заземления); - электроизолирующие и электроизмерительные клещи; - указатели напряжения всех видов и классов напряжений; - ручной электроизолирующий инструмент; - электроизолирующие перчатки, боты и галоши, ковры и подставки;

Электроизолирующие лестницы и стремянки; - оградительные устройства; - электроизолирующие накладки и колпаки; - сигнализаторы наличия напряжения индивидуальные; - заземления переносные, в том числе набрасываемые; - лестницы приставные и стремянки электроизолирующие стеклопластиковые.

Заключение. Существует очень много видов опасностей при работе с электрическими приборами и электроустановками, поэтому нужно соблюдать все меры предосторожности и так как при несчастном случае срочное прибытие медиков маловероятно, то каждый работающий с электричеством должен уметь оказывать первую доврачебную помощь.

по теме: "Электробезопасность"

Выполнила: ученица тех. лицея

при ДГТУ 11 а класса

Фоменко Инна

Проверил: Мацко Ю.Г.

Ростов-на-Дону

Действие электрического тока на организм

Поражение электричеством может иметь место в следующих формах:

· остановка сердца или дыхания при прохождении электрического тока через тело;

· механическая травма из-за сокращения мышц под действием тока;

· ослепление электрической дугой.

Смерть обычно наступает из-за остановки сердца, или дыхания, или того и другого. Переменный ток и постоянный ток опасны почти в одинаковой степени. Квалифицированные рабочие получают электрические травмы гораздо реже неквалифицированных рабочих. Дело здесь не столько в квалификации, сколько в том, что работодателю выгодно тратиться только на охрану труда ценных работников. 90% травм происходит из-за плохой организации труда и только 10% - по вине пострадавших. Под действием постоянного тока сокращаются мышцы тела. Если индивидуум взялся за находящуюся под напряжением часть оборудования, он, возможно, не сумеет оторваться без посторонней помощи. Более того, его, возможно, будет притягивать к опасному месту. Под действием переменного тока мышцы периодически сокращаются с частотой тока, но пауза между сокращениями бывает недостаточной, чтобы освободиться. Повреждения от электрического тока определяются силой тока и длительностью его воздействия. Чем меньше сопротивление человеческого тела, тем выше ток. Сопротивление уменьшается под действием следующих факторов: 1) высокое напряжение; 2) влажность кожи (потение ладоней - большой риск); 3) длительное время воздействия; 4) понижение парциального давления кислорода в воздухе: в горах, в плохо проветриваемых помещениях человек становится существенно более уязвим; 5) повышение содержания углекислого газа в воздухе; 6) высокая температура воздуха; 7) беспечность, психическая неподготовленность к возможному электрическому удару: настолько своеобразно устроен человеческий организм, что интеллект может управлять сопротивлением тела. Электрическое сопротивление человеческого тела имеет иную природу, чем сопротивление металлических проводников и электролитов. Оно зависит от многих внешних и внутренних (в том числе психических) факторов. Больше всего от действия электрического тока страдает центральная нервная система. Из-за повреждения ее нарушается дыхание и сердечная деятельность. Участки тела с наименьшим сопротивлением (т.е. более уязвимые):

· боковые поверхности шеи;

· тыльная сторона ладони;

· поверхность ладони между большим и указательным пальцами;

· рука на участке выше кисти;

· передняя часть ноги;

· акупунктурные точки, расположенные в разных местах тела.

Электроожоги излечиваются значительно труднее обычных термических. Некоторые последствия электротравмы могут проявиться через несколько часов, дней, месяцев. Пострадавший должен длительное время жить в "щадящем" режиме и находиться под наблюдением.

Опасные напряжения, токи, частоты

Имеются многочисленные примеры смертельных случаев от поражения электрическим током с напряжением 65, 36 и 12 Вольт. Есть случаи смертельного поражения при напряжении менее 4 Вольт. Вывод может быть только один: безопасного напряжения не существует. Соответственно не существует и безопасной силы тока. Распространенное мнение о безопасности тока силой менее 100 миллиампер - опасное заблуждение. Частота переменного тока 50 Гц - наиболее опасная. По некоторым данным менее опасен ток частотой 400 Гц.

Причины поражения. Возможны следующие причины поражения электрическим током:

1. Наведенное напряжение: Высоковольтные линии передачи переменного тока могут наводить высокое переменное напряжение в проходящих рядом низковольтных линиях электропередачи, линиях связи, любых протяженных проводниках, изолированных от земли. Может возникнуть даже на автомашине.

2. Остаточное напряжение: Линия электропередачи имеет большую электрическую емкость. Поэтому если линию отключить от напряжения, некоторое время все равно будет сохраняться разность потенциалов, и одновременное прикосновение к разным проводам приведет к электрическому удару. Однократный разряд линии с помощью заземленного проводника может оказаться недостаточным. Опасное остаточное напряжение может сохраняться в радиоаппаратуре, в составе которой есть конденсаторы с емкостью порядка миллифарад.

3. Статическое напряжение: Возникает в результате накопления электрического заряда на изолированном проводящем объекте.

4. Шаговое напряжение: Возникает между ногами из-за того, что они находятся на разном расстоянии от упавшего на землю провода.

5. Повреждение изоляции. Причины могут быть следующие:

· заводской брак;

· старение;

· климатические воздействия, загрязнение;

· механическое повреждение, например, инструментом;

· механический износ, например, на изгибе;

· преднамеренная порча.

6. Случайное прикосновение к токоведущей детали из-за незнания, спешки, действия отвлекающих факторов.

7. Отсутствие заземления: В заземленной аппаратуре в случае пробоя изоляции на корпус происходит короткое замыкание и сгорают предохранители.

8. Замыкание в результате аварии: Например, сильный ветер или другая причина может вызвать повреждение воздушной линии электропередачи и падение провода на проходящий параллельно воздушный провод радио или телефона, после чего считающийся низковольтным провод оказывается под высоким напряжением.

9. Несогласованность: Один индивидуум работает в аппаратуре, другой подает на нее напряжение.

Опасные факторы в быту и вне дома

Не известно ни одной электротравмы от эксплуатации электробритв. Из бытовой техники наиболее опасны стиральные машины: они устанавливаются во влажном помещении, вблизи водопровода, и электрический кабель бросается, как правило, просто на пол. Опасны электронагреватели. Электрические приборы, имеющие металлический корпус, опаснее приборов в корпусе из пластмассы. В домашних условиях случаются смертельные исходы из-за одновременного прикосновения к поврежденному электроприбору и к батарее водяного отопления или водопроводной трубе. (Вывод: все трубы покрывать толстым слоем краски.)

Меры безопасности в быту и вне дома

Перед включением электрической вилки в розетку убедитесь, что она именно от того пpибоpа, который Вы собираетесь включить. Также после выдергивания вилки из розетки пpовеpьте, что не ошиблись. Если провода шнуры от соседних устройств похожи, сделайте их разными: оберните изоляционной лентой или покрасьте. Не беритесь за электрическую вилку мокрой рукой. Не вбивайте гвоздь в стену, если не знаете, где проходит скрытая электpопpоводка. Следите за тем, чтобы розетки и другие разъемы не искрили, не грелись, не потрескивали. Если контакты потемнели, почистите их и устраните причину неплотного соединения. Не рекомендуется ходить под высоковольтными линиями электpопеpедачи. Создаваемое ими в воздухе электрическое напряжение вредно действует на организм. Не следует приближаться к оборванному проводу: может поразить шаговое напряжение. Если все-таки приходится пересекать опасную зону возле лежащего на земле провода, надо делать это бегом: чтобы одновременно только одна нога касалась почвы. При входе в троллейбус не следует прикасаться рукой к его борту. Корпус троллейбуса может находиться под напряжением из-за пробоя изоляции. Лучше впрыгивать в троллейбус, а не входить; выпрыгивать, а не выходить: чтобы не было ситуации, когда одна нога на земле, а другая - на подножке троллейбуса. Электрички и трамваи в этом отношении не опасны, потому что всегда заземлены. С.Еллинек пишет: «Главная особенность электротравмы в том, что напряжение нашего внимания, наша твердая воля в состоянии не только ослабить действие электрического тока, но иногда совершенно его уничтожить...». Сокрушительную силу падающей балки или взрыва нельзя ослабить мужеством и героической выдержкой, но это вполне возможно по отношению к действию электрического удара, если он наступает в период напряженного внимания. Действительно, кто слышит выстрел, не видя стреляющего, может погибнуть от внезапно наступившего шока, тот же, кто смотрит на стреляющего или сам стреляет, шоку не подвержен.

Опасные факторы на производстве

Наиболее опасные (в отношении электротравмы) отрасли хозяйства - сельское хозяйство и строительство. Причины в широком использовании временной электрической проводки (брошенных на землю или кое-как подвешенных проводов, попадающих в лужи, повреждаемых транспортными средствами). Примерно 30% электротравм на установках с напряжением 65 Вольт и ниже происходит оттого, что в результате ошибки или поломки они оказываются под напряжением 220 или 380 Вольт. Поверхность изолирующего материала может стать электропроводящей в результате загрязнения и/или смачивания. Наиболее часто жертвами становятся электромонтеры, радиомонтеры, электросварщики, строительные рабочие. Много случаев электрического поражения имеет место на производственных установках, в которых используются химически активные вещества, разрушающие изоляцию, а также в запыленных производственных помещениях (пыль снижает изолирующие свойства конструкций; покрытый влажной грязью изолятор становится проводником). Опасны влажные помещения. Пробой изоляции может произойти в скрытой проводке - в месте прохождения провода через отверстие в стене. Поражение может наступить от одновременного контакта с влажной поверхностью (стеной, полом) и деталью водопровода или водяного отопления. Больше половины поражений на электроосветительных установках случается при замене ламп. Поражения при совершении работ чаще имеют место в начале смены, перед обеденным перерывом и к концу смены. Объяснить это можно усталостью - ослаблением внимания, снижением сопротивляемости организма. Опасна временная прокладка кабеля по полу, по земле. Известны смертельные случаи из-за прикосновения токоведущих проводов к крышкам клеммных коробок. Из-за отсутствия единообразия в конструкциях токоведущих устройств случаются поражения при необдуманном совершении привычных действий.

Относительная опасность различных электрических приспособлений:

электродвигатель: (уровень принят за единицу) электросварочный аппарат: переносной электроприемник: высокочастотная установка.

Меры безопасности на производстве. При работе в аппаратуре, которая находится под напряжением, следует держаться одну руку в кармане. Впрочем, случались смертельные поражения током после замыкания через две точки на одной ладони. Нельзя работать в аппаpатуpе, которую могут включить без предупреждения. В некоторых случаях погибшие от электротравм при ремонте аппаратуры могли защититься простыми матерчатыми перчатками без "пальцев". Не следует оттаскивать голыми руками пострадавшего, который находится или может находиться под действием тока: спасающий сам может получить электрический удар через тело этого пострадавшего. Запрещается выполнение работ на линиях связи и электропередачи в сырую погоду, тем более в грозу. Включать и выключать мощные ручные рубильники разрешается только в изолирующих перчатках и галошах.

Защита от электрических и электромагнитных полей

Электрические и электромагнитные поля вредно действуют на организм. Под действием переменного поля в теле человека имеет место циркуляция электрических токов. Возникает разность потенциалов между частями тела. При контакте с заземленной металлической поверхностью происходит разряд тела, ощущаемый как неожиданный укол. Имеются следующие нормативы для лиц, работающих в условиях действия электрических полей.

Средства защиты от полей

1. Постоянные заземленные экраны.

2. Переносные заземляемые экраны. (Экраны делаются из металлической сетки или сплошного металлического листа).

3. Экранирующая одежда (из ткани с добавлением металлических нитей; из ткани с проводящим покрытием и пр.). Для защиты от статического электричества и наведенного напряжения корпус автомобиля (а также любого другого подвижного устройства из металла) должен заземляться. Поскольку покрышки колес делаются обычно из непроводящей резины, можно использовать цепь, волочащуюся за автомобилем.

Донской Государственный Технический Университет


Top