Шкала электромагнитных волн. презентация к уроку по физике (11 класс) на тему

Открытие электромагнитных волн - замечательный пример взаимодействия эксперимента и теории. На нем видно, как физика объединила, казалось бы, абсолютно разнородные свойства - электричество и магнетизм, - обнаружив в них различные стороны одного и того же физического явления - электромагнитного взаимодействия. На сегодня это одно из четырех известных фундаментальных физических взаимодействий, к числу которых также относятся сильное и слабое ядерные взаимодействия и гравитация. Уже построена теория электрослабого взаимодействия, которая с единых позиций описывает электромагнитные и слабые ядерные силы. Имеется и следующая объединяющая теория - квантовая хромодинамика - которая охватывает электрослабое и сильное взаимодействия, но ее точность несколько ниже. Описать все фундаментальные взаимодействия с единых позиций пока не удается, хотя в этом направлении ведутся интенсивные исследования в рамках таких направлений физики, как теория струн и квантовая гравитация.

Электромагнитные волны были предсказаны теоретически великим английским физиком Джеймсом Кларком Максвеллом (вероятно, впервые в 1862 году в работе «О физических силовых линиях», хотя подробное описание теории вышло в 1867 году). Он прилежно и с огромным уважением пытался перевести на строгий математический язык немного наивные картинки Майкла Фарадея, описывающие электрические и магнитные явления, а также результаты других ученых. Упорядочив одинаковым образом все электрические и магнитные явления, Максвелл обнаружил ряд противоречий и отсутствие симметрии. Согласно закону Фарадея переменные магнитные поля порождают электрические поля. Но не было известно, порождают ли переменные электрические поля - магнитные. Избавиться от противоречия и восстановить симметрию электрического и магнитного полей Максвеллу удалось, введя в уравнения дополнительный член, который описывал возникновение магнитного поля при изменении электрического. К тому времени благодаря опытам Эрстеда уже было известно, что постоянный ток создает вокруг проводника постоянное магнитное поле. Новый член описывал другой источник магнитного поля, но его можно было представить как некий воображаемый электрический ток, который Максвелл назвал током смещения , чтобы отличить от обычного тока в проводниках и электролитах - тока проводимости. В итоге получилось, что переменные магнитные поля порождают электрические поля, а переменные электрические - магнитные. И тогда Максвелл понял, что в такой связке колеблющиеся электрическое и магнитное поля могут отрываться от порождающих их проводников и двигаться через вакуум с определенной, но очень большой скоростью. Он вычислил эту скорость, и она оказалась около трехсот тысяч километров в секунду.

Потрясенный полученным результатом, Максвелл пишет Уильяму Томсону (лорду Кельвину, который, в частности, ввел абсолютную шкалу температур): «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли может отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений ». И далее в письме: «Я получил свои уравнения, живя в провинции и не подозревая о близости найденной мной скорости распространения магнитных эффектов к скорости света, поэтому я думаю, что у меня есть все основания считать магнитную и светоносную среды как одну и ту же среду...»

Уравнения Максвелла далеко выходят за рамки школьного курса физики, но они так красивы и лаконичны, что их стоит разместить на видном месте в кабинете физики, ведь большинство значимых для человека явлений природы удается описать с помощью всего нескольких строчек этих уравнений. Так сжимается информация, когда объединяются ранее разнородные факты. Вот один из видов уравнений Максвелла в дифференциальном представлении. Полюбуйтесь.

Хочется подчеркнуть, что из расчетов Максвелла получалось обескураживающее следствие: колебания электрического и магнитного полей - поперечные (что он сам все время подчеркивал). А поперечные колебания распространяются только в твердых телах, но не в жидкостях и газах. К тому времени было надежно измерено, что скорость поперечных колебаний в твердых телах (попросту скорость звука) тем выше, чем, грубо говоря, тверже среда (чем больше модуль Юнга и меньше плотность) и может достигать нескольких километров в секунду. Скорость поперечной электромагнитной волны была почти в сто тысяч раз выше, чем скорость звука в твердых телах. А надо заметить, что характеристика жесткости входит в уравнение скорости звука в твердом теле под корнем. Получалось, что среда, через которую идут электромагнитные волны (и свет), имеет чудовищные характеристики упругости. Возник крайне тяжелый вопрос: «Как же через такую твердую среду движутся другие тела и не чувствуют ее?» Гипотетическую среду назвали - эфиром, приписав ему одновременно странные и, вообще говоря, взаимоисключающие свойства - огромную упругость и необычайную легкость.

Работы Максвелла вызвали шок среди ученых-современников. Сам Фарадей с удивлением писал: «Сначала я даже испугался, когда увидел такую математическую силу, примененную к вопросу, но потом удивился, видя, что вопрос выдерживает это столь хорошо». Несмотря на то, что взгляды Максвелла опрокидывали все известные на то время представления о распространении поперечных волн и о волнах вообще, прозорливые ученые понимали, что совпадение скорости света и электромагнитных волн - фундаментальный результат, который говорит, что именно здесь физику ожидает основной прорыв.

К сожалению, Максвелл умер рано и не дожил до надежного экспериментального подтверждения своих расчетов. Международное научное мнение изменилось в результате опытов Генриха Герца, который через 20 лет (1886–89) в серии экспериментов продемонстрировал генерацию и прием электромагнитных волн. Герц не только в тиши лаборатории получил правильный результат, но страстно и бескомпромиссно защищал взгляды Максвелла. Причем он не ограничился экспериментальным доказательством существование электромагнитных волн, но и исследовал их основные свойства (отражение от зеркал, преломление в призмах, дифракцию, интерференцию и т. д.), показав полную тождественность электромагнитных волн со светом.

Любопытно, что за семь лет до Герца, в 1879 году английский физик Дэвид Эдвард Юз (Хьюз - D. E. Hughes) тоже продемонстрировал перед другими крупными учеными (среди них был также блестящий физик и математик Георг-Габриель Стокс) эффект распространения электромагнитных волн в воздухе. В результате обсуждений ученые пришли к выводу, что видят явление электромагнитной индукции Фарадея. Юз расстроился, не поверил самому себе и опубликовал результаты лишь в 1899 году, когда теория Максвелла-Герца стала общепринятой. Этот пример говорит, что в науке настойчивое распространение и пропаганда полученных результатов имеет часто не меньшее значение, чем сам научный результат.

Генрих Герц так подытожил результаты своих экспериментов: «Описанные эксперименты, как, по крайне мере, кажется мне, устраняют сомнения в тождественности света, теплового излучения и электродинамического волнового движения».



Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

10 5 - 10 -3

Частота(Гц)

3 · 10 5 - 3 · 10 11

Источник

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

История открытия

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


ВЫВОД:

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Шкала электромагнитных волн. Виды, свойства и применение.

Из истории открытий… 1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля.

1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна.

1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором.

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Низкочастотные колебания Длина волны(м) 10 13 - 10 5 Частота(Гц) 3· 10 -3 - 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж (1893 г.), Тесла (1983) Применение Кино, радиовещание(микрофоны, громкоговорители)

Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Длины волн охватывают область от 1 мкм до 50 км

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами.

Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов

Видимое излучение Свойства: отражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм.

Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t 0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ.

Применение: в медицине, в промышленности.

Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм)

Применение: В медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.

γ -излучение Источники: атомное ядро (ядерные реакции). Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение

Применение: В медицине, производстве (γ -дефектоскопия).

Воздействие ЭМВ на организм человека

Спасибо за внимание!


«Волны в океане» - Разрушительные последствия Цунами. Движение земной коры. Изучение нового материала. Узнать объекты на контурной карте. Цунами. Длина в океане до 200 км, а высота 1 м. Высота Цунами у берега до 40 м. Г.Пролив. В.Залив. Ветровые волны. Приливы и отливы. Ветер. Закрепление изученного материала. Средняя скорость Цунами 700 – 800 км/час.

«Волны» - «Волны в океане». Распространяются со скоростью 700-800км\ч. Угадай, какой внеземной объект вызывает приливы и отливы? Наибольшие приливы в нашей стране – на Пенжинской губе в Охотском море. Приливы и отливы. Длинные пологие волны, без пенистых гребней, возникающие в безветренную погоду. Ветровые волны.

«Сейсмические волны» - Полное разрушение. Ощущается почти всеми; многие спящие просыпаются. Географическое распространение землетрясений. Регистрация землетрясений. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. Меняется уровень воды в колодцах. На земной поверхности видны волны. Общепринятого объяснения таких явлений пока нет.

«Волны в среде» - То же относится к газообразной среде. Процесс распространения колебаний в среде называется волной. Следовательно, среда должна обладать инертными и упругими свойствами. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

«Звуковые волны» - Процесс распространения звуковых волн. Тембр является субъективной характеристикой восприятия, в целом отражающей особенность звука. Характеристики звука. Тон. Рояль. Громкость. Громкость – уровень энергии в звуке – измеряется в децибелах. Звуковая волна. На основной тон, как правило, накладываются дополнительные тоны (обертоны).

«Механические волны 9 класс» - 3.По природе волны бывают: А. Механическими или электромагнитными. Плоская волна. Объясните ситуацию: Всё описать не хватит слов, Весь город перекошенный. В тихую погоду - нет нас нигде, А ветер подует - бежим по воде. Природа. Что «движется» в волне? Параметры волны. В. Плоскими или сферическими. Источник совершает колебания вдоль оси OY перпендикулярно ОХ.

Цели урока:

Тип урока:

Форма проведения: лекция с презентацией

Карасёва Ирина Дмитриевна, 17.12.2017

3355 349

Содержимое разработки

Конспект урока на тему:

Виды излучений. Шкала электромагнитных волн

Урок разработан

учителем ГУ ЛНР «ЛОУСОШ № 18»

Карасёвой И.Д.

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

Тип урока: урок формирования новых знаний.

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Виды излучений.

Шкала электромагнитных волн»

Ход урока

    Организационный момент.

    Мотивация учебной и познавательной деятельности.

Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Н о знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

    Постановка темы и целей урока.

Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Виды излучений. Шкала электромагнитных волн» (Слайд 1)

Каждое излучение мы будем изучать по следующему обобщенному плану (Слайд 2) .Обобщенный план для изучения излучения:

1. Название диапазона

2. Длина волны

3. Частота

4. Кем был открыт

5. Источник

6. Приёмник (индикатор)

7. Применение

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

Таблица "Шкала электромагнитных излучений"

Название излучения

Длина волны

Частота

Кем было

открыто

Источник

Приёмник

Применение

Действие на человека

    Изложение нового материала.

(Слайд 3)

Длина электромагнитных волн бывает самой различной: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м ( -лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

(Слайд 4)

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

Количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

(Слайд 5)

Низкочастотное излучение возникает в диапазоне частот от 3 · 10 -3 до 3 10 5 Гц. Этому излучению соответствует длина волны от 10 13 - 10 5 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

(Слайд 6)

Радиоволны занимают диапазон частот 3·10 5 - 3·10 11 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

(Слайд 7)

Инфракрасное излучение занимает диапазон частот 3 · 10 11 - 3,85 · 10 14 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

(Слайд 8)

Видимое излучение - единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 - 670 нм ( = 3,85 10 14 - 8 10 14 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет - не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

(Слайд 9)

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределахдлин волн 3,8 ∙10 -7 - 3∙10 -9 м. (=8*10 14 - 3*10 16 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения - валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

 = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники,использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды,ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез вит амина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

(Слайд 10)

Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -12 - 1 0 -8 м (частот 3*10 16 - 3-10 20 Гц ). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изоб ражения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

(Слайд 11)

Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙10 14 - 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7 - 3∙10 -9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году.

Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названогамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

(Слайд 12)

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

(Слайд 13)

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

    физическая природа всех излучений одинакова

    все излучения распространяются в вакууме с одинаковой скоростью, равной 3*10 8 м/с

    все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

5. Подведение итогов урока

В заключение урока учащиеся заканчивают работу над таблицей.

(Слайд 14)

Вывод:

    Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

    Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.

    Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.

    Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

    Конспект (выучить), заполнить в таблице

последний столбец (действие ЭМИ на человека) и

подготовить сообщение о применении ЭМИ

Содержимое разработки


ГУ ЛНР «ЛОУСОШ № 18»

г. Луганска

Карасёва И.Д.


ОБОБЩЁННЫЙ ПЛАН ИЗУЧЕНИЯ ИЗЛУЧЕНИЯ

1. Название диапазона.

2. Длина волны

3. Частота

4. Кем был открыт

5. Источник

6. Приёмник (индикатор)

7. Применение

8. Действие на человека

ТАБЛИЦА «ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН»

Название излучения

Длина волны

Частота

Кем открыт

Источник

Приёмник

Применение

Действие на человека



Излучения отличаются друг от друга:

  • по способу получения;
  • по методу регистрации.

Количественные различия в длинах волн приводят к существенным качественным различиям, по-разному поглощаются веществом (коротковолновые излучения – рентгеновское и гамма-излучения) – поглощаются слабо.

Коротковолновое излучение обнаруживает свойства частиц.


Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

Частота(Гц)

10 5 - 10 -3

Источник

3 · 10 5 - 3 · 10 11

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

История открытия

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп.


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


  • Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.
  • Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.
  • Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.
  • Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

  • § 68 (читать)
  • заполнить последний столбец таблицы (действие ЭМИ на человека)
  • подготовить сообщение о применении ЭМИ

Top